The Microwave Climate Data Center Repository

Katherine Wentz
Research Scientist, Remote Sensing Systems

Andrew Manaster
Research Scientist, Remote Sensing Systems
The Microwave Climate Data Center Repository

Katherine Wentz1 and Andrew Manaster1

1 Remote Sensing Systems, 444 Tenth Street, Suite 200, Santa Rosa, CA 95401
* Corresponding author(s): Katherine Wentz (kwentz@remss.com)

Abstract: Since 1979, Remote Sensing Systems has been providing a global community of researchers and decision makers with inter-calibrated microwave measurements and geophysical retrievals derived from passive and active spaceborne sensors. These datasets, from 35 microwave sensors covering a time period of 40 years, have been consolidated at the Microwave Climate Data Center repository. The geophysical retrievals include: sea-surface temperature, near-surface ocean wind speed and direction, columnar atmospheric water vapor, columnar cloud liquid water, sea-surface rain rate, sea-surface salinity, and atmospheric temperature profiles. Consistent calibration procedures and retrieval methods have been applied during the data processing to ensure these datasets are suitable for climate research. All of the geophysical retrievals relate to the air-sea boundary layer and are classified as essential climate variables by the Global Climate Observing System. In this paper, we give an overview of the microwave sensors, the inter-calibration methods, the retrieval algorithms, and the air-sea essential climate variable datasets housed at the Microwave Climate Data Center.

Keywords: Microwave Climate Data Center; Remote Sensing; Air-Sea Essential Climate Variables; Sensor Inter-Calibration; Radiative Transfer Model; Maximum Likelihood Estimator; Validation

Background and Summary

In the electromagnetic spectrum, microwave (MW) frequencies range from approximately 0.3 to 300 GHz (wavelengths between one millimeter and one meter). This MW radiation, whether emitted passively by various sources including the Sun and Earth or actively by radar that sends out pulses of radiation, interacts in unique ways with the Earth’s surface and atmosphere1. Instruments designed to measure radiation at MW frequencies onboard Earth-orbiting satellites are used to retrieve geophysical quantities that are crucial for understanding the world’s weather and climate. In this regard, Remote Sensing Systems (RSS) has focused on a specific area of research and data production: passive and active MW observations of the world’s oceans. Using frequently updated retrieval algorithms, RSS translates the MW radiation observed by satellites into climate-quality data. These datasets are publicly available and hosted by the RSS Microwave Climate Data Center (MCDC) repository at https://www.remss.com.

MCDC Datasets include: sea-surface temperature, near-surface ocean wind speed and direction, columnar atmospheric water vapor, columnar cloud liquid water, sea-surface rain rate, sea-surface salinity, and atmospheric temperature profiles. All of these climate datasets are considered air-sea (AS) variables and are classified as essential climate variables (ECVs) by the Global Climate Observing System (GCOS)2. Most of these global geophysical datasets, hereafter referred to as AS-ECVs, extend from 1987 to the present day.

While there are many ways to observe AS-ECVs over the ocean, using spaceborne MW sensors to do so provides distinct advantages over other forms of measurement. First, the atmosphere is relatively transparent at many MW frequencies. This allows spaceborne MW sensors to observe the surface of the Earth even in areas of heavy cloud cover or high columnar water vapor. Around 22 and 60 GHz, the atmosphere becomes opaque to MW radiation; nonetheless, these MW frequencies can be used for measuring geophysical qualities of the intervening atmosphere. Secondly, MW sensors do not require solar illumination to observe the Earth’s surface and atmosphere, and therefore they can take measurements at any time of the day making them well-suited for observing diurnal cycles in AS-ECVs. Infrared (IR) imagers can similarly take snapshots of clouds throughout the day; however, they can only image the tops of clouds. Third, polar orbiting MW sensors are able to view wide swaths of the Earth over the course of a single day and can provide global coverage every few days. This is in contrast to airborne, ship, or other ground-based measurements which can only provide information at a single point or within a relatively small area3.
Despite the advantages of MW remote sensing, there are two primary limitations to using spaceborne MW instruments to measure AS-ECVs over the world’s oceans. First, the presence of heavy rain interferes with MW radiation at higher frequencies (> ~12 GHz) because rain drops attenuate and scatter MW signals while also creating splash effects that are difficult to disentangle from the AS-ECV signals of interest\(^4\). Second, MW sensors have a relatively coarse spatial resolution as compared to higher frequency bands of radiation, such as visible and IR. To increase the spatial resolution, the MW frequency must be increased or a larger antenna needs to be used\(^1\). Unfortunately, some AS-ECVs, such as salinity, are only sensitive at the lower frequencies (1.4 GHz). Given these limitations, RSS uses MW satellite sensors to retrieve AS-ECVs in ocean areas that are generally free of heavy rain and assumes that the AS-ECVs are relatively constant at kilometer scales. However, there are several exceptions to this, which are discussed in greater detail in this paper.

RSS has 40+ years of experience in generating and refining the MCDC AS-ECV products from MW sensors. As a result, RSS has developed a reputation for providing precisely calibrated AS-ECVs that can be used for the most demanding climate-trend analyses. This trust is based on the high-degree of consistency in all aspects of data production, starting with sensor inter-calibration, continuing through to the advanced radiative transfer models and geophysical model functions in the RSS retrieval algorithms, and ending with rigorous validation analyses. The goal of this paper is to provide the community with a detailed description of the generation and current status of AS-ECV datasets hosted by the RSS MCDC repository.

Methods

MW Sensor Inventory

The MCDC AS-ECV sensor inventory currently includes 35 MW sensors covering a time period of 40 years. Measurements from these sensors have been inter-calibrated and processed using consistent data processing techniques for: (1) resampling, (2) geolocation, and (3) AS-ECV retrievals. Figure 1 shows the mission timelines for the sensors, and Tables 1–3 provide the instrument characteristics. The following additional sensors will be added in the near future: CIMR, COWVR, MWI/WSF-M, AMSR-3, MWI/Metop-SG, SCA, and MWS/Metop-SG.

There are three basic types of sensors:

1. The conical scanning MW imager (Table 1)
2. The cross-track scanning MW sounder (Table 2)
3. The scatterometer (both conical scanning and fixed cross-track) (Table 3)

The MW imagers and sounders are radiometers that observe the upwelling brightness temperature (\(T_s\)) that is passively emitted from the Earth. The scatterometers are active radars that transmit power to the Earth and then measure the received power, reporting the normalized radar cross-section (\(\sigma_v\)). Both radiometer and scatterometer MW sensors fly in polar orbits with varying degrees of inclination. The trajectory of a slightly inclined near-polar orbit is nearly north–south, with the satellite passing near the Earth poles each orbit. At the equator, the near-polar orbiters are sun-synchronous and cross the equator at the same local mean solar time with ascending and descending orbit segments having local

Figure 1 MCDC Microwave Sensor Collection. Microwave sensors with their mission timelines that are used in constructing the MCDC AS-ECV data records.
According to the National Research Council, a climate data record (CDR) is defined as “a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and climate change”. In order for the data...
products to reach the consistency required to build a climate-quality dataset, covering two to four decades, the basic measurements (T_b or σ_v) need to be precisely inter-calibrated. Given the 35 MW sensors in the MCDC inventory, inter-calibration has been a major component of the work done at RSS.

RSS performed the first MW imager inter-calibration in 1990 when the second SSM/I went into operation. Since then, there have been many generations of calibration procedures8,9,10,11,12. Currently, 14 MW imagers, excluding one of the SSMIS', have been inter-calibrated to GMI which provides the most accurate measurements with a T_b absolute accuracy of 0.25 K and a T_b absolute accuracy of 0.1 K valid from cold ocean temperatures to the hot rainforest12. Moreover, GMI is in an inclined orbit and provides coincident collocations with other sensors, essentially eliminating errors related to diurnal variations.

The retrieval algorithm for the MW imager is based on a radiative transfer model (RTM) for the earth and attenuating atmosphere, which is common to all of the imagers. The RTM is also called the forward model because it provides top-of-the-atmosphere T_{bs} for a given earth scene when AS-ECVs are used as inputs (Equations 5–10; Table 4). The essential elements of the RTM are surface temperature (T_s) and emissivity (E), as well as atmospheric profiles of pressure (P), temperature (T), water vapor (ρ_v), and cloud liquid water (ρ_l). The emissivity is a function of surface temperature, sea-surface salinity (S), wind speed (W), and wind direction relative to the azimuthal look (ϕ). The rain rate is a function of the RTM-derived cloud liquid water and the rain column height, which in turn is linearly related to RTM-derived sea-surface temperature; generally speaking, rain occurs when the cloud liquid water value exceeds a threshold of 0.18 kg/m\(^2\). In the sea-surface salinity retrieval, there is only one frequency available (1.4 GHz); therefore, the RTM requires several ancillary datasets to retrieve emissivity and top-of-the-atmosphere T_b, including sea-surface temperature, wind speed and direction, atmospheric profiles, and rain rate17. The RTM is described in greater detail in the literature18,19,20,21 and provided for cases in which the atmospheric scattering by liquid water droplets is neglected22,23,24.

\[
T_b = T_{bU} + \tau(0,H)\left[ET_s + (1 - E)(T_{bd} + \tau(0,H)T_c)\right] + \tau(0,H)T_{b,scat} \tag{5}
\]

\[
T_{b,scat} = \Omega(1 - E)\left[T_{bd} + \tau(0,H)T_C - T_c\right] \tag{6}
\]
\[
T_{BV} = \sec \theta \int_0^H \alpha(h)T(h)\tau(h,H)dh, \quad T_{BD} = \sec \theta \int_0^H \alpha(h)T(h)\tau(0,h)dh
\]

(7)

\[
\tau(h_1, h_2) = \exp \left(- \sec \theta \int_{h_1}^{h_2} \alpha(h)dh \right)
\]

(8)

\[
\alpha(h) = \alpha_D(T(h), P(h)) + \alpha_P(T(h), P(h), \rho_P(h)) + \alpha_L(\varepsilon_L, \rho_L(h))
\]

(9)

\[
E = E_0(\theta, S, T_S) + \Delta E_W(\theta, W, T_S) + \Delta E_\varphi(\theta, W, \varphi)
\]

(10)

The retrieval algorithm is an approximate inversion of the forward model. It provides estimates of the AS-ECVs for a given set of top-of-the-atmosphere \(T_b \) observations taken over a range of frequencies and polarizations. The retrieval algorithm uses multiple non-linear regressions in order to find the AS-ECVs\(^{18,25} \). The regression coefficients are derived from a training set of simulated \(T_b \)s from the RTM using Monte Carlo combinations of AS-ECVs representative of all-possible global conditions. To deal with a possible non-linear dependence between the \(T_b \)s and AS-ECV, a two-stage linear regression is used (Equations 11–13, using two AS-ECVs as an example; Table 4). The first stage \((m_1) \) is valid for global conditions and provides a first-guess for the AS-ECVs. Given this first guess, a second-stage regression \((m_2) \) is selected based on the specific environment found by the first stage.

\[
m_{1,j} = a_{0,j} + \sum_{l=1}^{nMWchan} a_{i,j} t_l + b_{i,j} t_l^2
\]

(11)

\[
m_{2,j} = \sum_{k=0}^{k_0+1} \sum_{l=l_0}^{l_0+1} w_{k-l} a_{j,k} t_l + \sum_{i=1}^{nMWchan} c_{i,j,k} t_i
\]

(12)

\[
t_i = T_{Bi} - 150 \quad \text{for all but 24 GHz}, \quad t_i = -\ln(290 - T_{Bi}) \quad \text{for 24 GHz}
\]

(13)

An exception to the retrieval algorithm regression approach is used in the wind vector retrieval (wind speed and wind direction). In this case, the MW imager needs to be fully polarimetric and a classical “chi-squared” Maximum Likelihood Estimator (MLE) is used that minimizes the differences between the observed \(T_b \)s and RTM-computed \(T_b \). The wind direction algorithms generally, but not always, provide multiple solutions (ambiguities) for wind directions. The final step in the wind direction retrieval is an ambiguity selection that chooses the wind vector that is consistent with nearby values\(^{26} \).

MW Sounder Atmospheric Temperature Retrieval Algorithm

The retrieval algorithm for the MW sounders finds the temperature for five atmospheric layers\(^{27} \):

1. Temperature of the Lower Troposphere (TLT)
2. Temperature of the Total Troposphere (TTT)
3. Temperature of the Middle Troposphere (MTM)
4. Temperature of the Troposphere and Stratosphere (TTS)
5. Temperature of the Lower Stratosphere (TLS)

The atmospheric temperature products are provided globally over ocean, land, and ice. This is in contrast to the other MCDC data products which are only provided over the global ocean. The sounding channels used in the retrieval are in the 50–60 GHz part of the MW spectrum. Since molecular oxygen in the atmosphere strongly absorbs and emits MW radiation in this range, the \(T_b \)s at these frequencies represents the vertically-averaged air temperature over a select layer of the atmosphere. The extent and vertical location of the layer depends on the EIA and frequency of the observation. Equation (14) relates the observed \(T_b \) to the sum of the small surface contribution (first term) and the vertically-averaged atmospheric contribution (second term) (Table 4)\(^{13} \). The surface contribution to the \(T_b \) depends on the zenith optical depth (\(\tau \)) for an atmospheric layer, which is the integration of the atmospheric absorption coefficient (\(\kappa \)) (Equation 15; Table 4). Weighting functions in the second term are used to separate the \(T_b \) contributions from various layers in the atmosphere; they are a
function of the height above sea level and depend on the observation frequency and the EIA (Equation 16; Table 4). For three of the channels (TMT, TTS, and TLS) we report the T_B for a limited set of near-nadir views, with each off-nadir T_B referred to nadir using adjustments calculated from the RTM for climatological atmospheric profiles. TTT is constructed from a weighted combination of TMT and TLS to reduce the stratospheric contribution28. TLT is constructed using a linear combination of measurements at different views to move the weighting function closer to the surface14,15.

$$T_B = ET_\Sigma \exp(-z(0,\infty) \sec \theta) + \int_0^h F(h) T(h) dh$$ \hspace{1cm} (14)

$$z(h_1, h_2) = \int_{h_2}^{h_1} \kappa(h) dh$$ \hspace{1cm} (15)

$$F(h) = \kappa(h) \sec \theta \exp(-z(h, \infty) \sec \theta) + \kappa(h) \sec \theta \exp(-z(0, h) \sec \theta) (1 - E) \exp(-z(0, \infty) \sec \theta)$$ \hspace{1cm} (16)

MW Scatterometer Wind Vector Retrieval Algorithm

In low wind conditions, the smooth ocean surface reflects most of the microwave energy away from the scatterometer and there is very little backscatter returned to the sensor. However, wind-induced ocean surface roughness increases scatter in every direction off of the capillary waves. The amount of backscatter depends on surface wind speed (W) and wind direction relative to the azimuthal look (ϕ)3. The retrieval algorithm for the MW scatterometers measures the ocean wind vector (wind speed and wind direction) 10 meters above the ocean surface. The retrieval algorithm is based upon a geophysical model function (GMF) that relates σ_o to wind speed and direction23,26,30. The GMF is an expanded Fourier series of even harmonics in the relative wind direction (Equation 17, keeping harmonics up to the second order; Table 4). The coefficients for the fifth order polynomial of wind speed for each of the harmonic functions in the wind direction are tuned using wind speed measurements from WindSat and wind directions from NCEP that are both matched up with the scatterometer σ_o.

Similar to the wind vector retrieval algorithm for fully polarimetric MW imagers, the scatterometer wind vector retrieval algorithm employs a classical “chi-squared” MLE that minimizes the differences between the observed σ_o and the GMF σ_o. The MLE is then followed by an ambiguity selection algorithm30.

$$\sigma_o = \sum_{i=1}^{5} d_{0,i} W^i + \cos \phi \sum_{i=1}^{5} d_{1,i} W^i + \cos(2\phi) \sum_{i=1}^{5} d_{2,i} W^i$$ \hspace{1cm} (17)

Data Records

The AS-ECVs hosted by the MCDC are used by the scientific community to study climate change, as well as by commercial and operational agencies for a variety of purposes, including weather operations, renewable energy, and shipping logistics.

The MCDC AS-ECV datasets are freely available from the RSS website via both HTTP (https://data.remss.com/) and FTP file transfer protocols. Table 5 provides key specifications of individual AS-ECV datasets, the majority of which are on an Earth-centered grid at regular 0.25-degree latitude/longitude intervals with a daily or composite (3-day, weekly, 8-day, monthly) temporal resolution. Although the AS-ECVs are released on a 0.25-degree sampling grid, it is important to note that their inherent resolution in kilometers depends on the sensor (Tables 1–3). In addition to the individual AS-ECV datasets, intercalibrated top-of-the-atmosphere T_s from MW imagers are freely available upon request. The following subsections describe individual AS-ECV datasets as well as merged AS-ECV CDRs.

Sea-Surface Temperature

Sea-surface temperature (SST) is a measure of the temperature (°C) of the skin layer of the ocean (~20 µm-depths measured by IR imagers), sub-skin layer of the ocean (~1 mm-depths measured by MW imagers), and foundation ocean (0.5–1.5 m-depths). SST measurements are used to observe changes in global climate, monitor decadal climate variability including the El Niño Southern Oscillation (ENSO), and forecast tropical cyclones. SSTs are important boundary (input) conditions for atmosphere-only models and have been used to train coupled ocean-atmosphere climate models so that their outputs match observations31. Beyond climate modeling and seasonal forecasting, SST observations are useful for predicting coral bleaching, tracking pollution, and commercial fishery and tourism industries. The MCDC provides sub-skin SSTs from MW
imagers with low frequency channels (6–11 GHz) that are sensitive to ocean temperatures at these depths. The MCDC also produces an optimally interpolated (OI) foundation SST, which merges observations from multiple sensors32,33,34 and removes diurnal warming35,36. There are two flavors of the MCDC OI SST product. One of the OI SSTs only uses MW imagers as input, while the other employs both MW imagers and IR imagers that measure skin SST. MCDC SSTs range from -3 to 35°C.

Ocean Wind Speed and Wind Vectors over Ocean and Land

The MCDC repository of wind speed (m/s) and wind vectors (wind speed and direction in degrees) represent near-surface conditions (10 meters above the ocean surface). The wind direction is provided in the wind vector azimuth convention, i.e., the direction points along mass flow with 0 degrees referring to wind blowing towards the Northern direction (the degrees increase in the clockwise direction). On short timescales (daily to weekly), winds are used for predicting and monitoring tropical cyclones. On longer timescales (seasonal to interannual), winds can provide insight into climate variability, including monsoon intensity and changes in rain patterns (e.g., due to ENSO), which can greatly affect global populations in various parts of the world via flooding or droughts37,38. The MCDC provides scalar ocean wind speeds from MW imagers both in non-rainy conditions and rainy conditions (Tropical Cyclone (TC) winds and All-Weather winds39,40,41) (Figure 3). In addition, the MCDC distributes ocean wind vectors from fully polarimetric MW imagers, MW scatterometers as well as the Cross-Calibrated Multi-Platform (CCMP) wind vector analysis product42,43. Note that the MCDC supplies two wind speed products, one from low frequency MW imager observations (11–37 GHz) and the second from medium frequency MW imager observations (19–37 GHz). MCDC wind speeds range from 0 to 70 m/s and wind directions range from 0 to 350 degrees.

Columnar Atmospheric Water Vapor over Ocean

Columnar atmospheric water vapor is the amount of gaseous water present in a column of air extending from the Earth’s surface to the top of the atmosphere. Columnar water vapor is reported in units of kg/m\(^2\) (the vertically-integrated mass of water vapor), which can then be converted to mm when divided by the density of water. Atmospheric water vapor is essential for cloud formation and latent heat transport, both of which contribute to tropical and extratropical storms. In addition, evidence suggests that increased atmospheric moisture will enhance the intensity of atmospheric rivers, which will lead to substantially longer and wider atmospheric rivers than the ones observed today44,45. Water vapor also plays an important role in the climate due to its potency as a greenhouse gas and water vapor positive feedback loop. This water vapor feedback plus the temperature lapse rate feedback, 1.30 W m\(^{-2}\) °C\(^{-1}\) in total, will increase the total climate feedback warming by 50%46. The MCDC provides measurements of water vapor over the ocean calculated from the 22 GHz band of MW imagers, which is near the peak of one of the water vapor absorption frequencies; values range from 0 to 120 mm.

Columnar Cloud Liquid Water over Ocean

Columnar cloud liquid water is a measure of the depth of liquid water in mm contained in a cloud for a vertical column of the atmosphere (any ice and snow present in the cloud are not included in this measurement). Cloud liquid water is also often reported as the mass of liquid water per mass or volume of air (g/kg or g/m\(^3\)). Cloud liquid water plays a substantial
role not only in the global water cycle, but also in how atmospheric radiation is absorbed, scattered, and reemitted: clouds can have competing effects on the climate, some of which cool the earth by reflecting visible light while others warm the earth by absorbing IR radiation48. The MCDC supplies cloud liquid water measurements above the ocean calculated from a range of MW imager frequencies (19–37 GHz); values range from 0 to 1.8 mm.

Sea-Surface Salinity

Sea-surface salinity (SSS) is a measure of how salty the ocean is in its uppermost layer (~1 cm). It is expressed in terms of Practical Salinity Units (psu), which are approximately equivalent to parts per thousand. Satellite measurements of SSS are important for studying the global water cycle (e.g., areas of precipitation and evaporation), oceanic currents and transport, and river discharge49. The MCDC provides SSS retrievals from the 1.4 GHz frequency characteristic of the SMAP MW imager at two resolutions: 40 km and 70 km; values range from 0 to 45 psu. The 70 km SSS product should be used for most scientific purposes as the noise associated with the SSS retrievals is greatly reduced when compared to the 40 km product (Figure 4).

Sea-Surface Rain Rate

Sea-surface rain rate is a measure of the average rain rate at the ocean surface in mm/hr. Rain from atmospheric rivers and monsoons supplies fresh water to the world’s population centers49,50,51. Over recent decades there has been a narrowing and strengthening of rain in the Inter-Tropical Convergence Zone (ITCZ), a belt of rainfall that shifts north and south, providing monsoonal rain52. Accurate measurements of rain improve characterization of droughts, landslides, floods, and severe storms, which have enormous impacts on society. The MCDC provides sea-surface rain rates calculated from a range of MW imager frequencies (19–37 GHz); values range from 0 to 25 mm/hr.

Atmospheric Temperature Profiles over Ocean and Land

Satellite measurements of atmospheric temperature are critical for training and verifying atmosphere-ocean coupled general circulation models (GCMs) to predict future changes to the climate54. According to the Inter-governmental Panel on Climate Change (IPCC), under high greenhouse gas emissions scenarios the lower troposphere global average temperatures are predicted to increase by 1.5 °C relative to pre-industrial levels by 2030 to 205225. The MCDC at RSS provides temperature measurements for five layers of the atmosphere over ocean and land: Temperature Lower Troposphere (TLT), Temperature Total Troposphere (TTT), Temperature Middle Troposphere (TMT), Temperature Troposphere Stratosphere (TTS), and Temperature Lower Stratosphere (TLS)27. Atmospheric temperatures are calculated from the 50–60 GHz channels of MW sounders; values range from approximately 80 to 310 K depending on the atmospheric layer.

RSS CDRs

RSS has combined select AS-ECV data from multiple MW imagers into a single CDR on a 2.5-degree, global grid for each month from 1987 to present: wind speed, columnar atmospheric water vapor, columnar cloud liquid water, and sea-surface rain rate. During sensor overlap periods, the CDR AS-ECV is determined by averaging the multi-sensor retrievals together into a single gridded map. The CDR additionally includes sea-surface temperature from Reynolds Optimal Interpolation (OI) because the MCDC MW sea-surface temperature record does not extend back to 1987. The CDR was created for trend analysis; for example, Figure 5 shows trend maps of the AS-ECVs from this CDR. A secondary available CDR contains tropospheric and stratospheric temperatures derived from MW sounders, MSU and AMSU, spanning 1979 to present. Figure 6 shows the long-term trends from this CDR: tropospheric temperatures have increased by 0.213 K per decade and stratospheric temperatures have decreased by -0.210 K per decade. The data for the MW imager AS-ECV CDR is located at: https://www.remss.com/climate/Air-Sea-Essential-Climate-Variables/. The data for the MW sounder AS-ECV CDR is located at: https://images.remss.com/msu/msu_time_series.html.

Figure 4 MCDC Sea-Surface Salinity (SSS). SSS from SMAP is averaged over eight days centered on June 15, 2018.
A majority of work completed at RSS revolves around the validation of the MCDC datasets. The following sub-sections provide examples of the technical validation of individual AS-ECV datasets.

Sea-Surface Temperature

The average bias between MCDC MW sub-skin SSTs from TMI and moored buoys is -0.08°C and the standard deviation of the bias is 0.57°C for all collocations from 1998 to 2001. To mitigate the effect of diurnal warming on the bias, SST measurements corresponding wind speeds less than 6 m/s and between 10 am and 6 pm were excluded from the above statistics. In addition, all retrievals within 25 km of a non-zero rain retrieval were excluded from the bias statistics because undetected rain can cause a warm bias in the MW SSTs. Similar to the TMI validation study, the MCDC MW sub-skin SSTs from AMSR-E (AMSR-2) collocated with moored and drifting buoys, ships, and Coastal-Marine Automated Network in situ SSTs spanning 2002 to 2011 (2012 to 2014) exhibited a bias of -0.04°C and standard deviation of 0.55°C.

Ocean Wind Speed and Wind Vectors over Ocean and Land

On a global scale, wind speeds between 0–15 m/s from MCDC MW imagers and scatterometers agree with buoy measurements with an error of about 1–1.5 m/s. For higher wind speeds, between 15–25 m/s, accurate in situ measurements from buoys are difficult to obtain because the wind-measuring devices (anemometers) on buoys are impacted by buoy tilting, high sea state, and wave-sheltering. However, when compared to anemometers mounted high on oil
platforms in the North Sea (and therefore not subject to the same ocean effects as buoys) imager and scatterometer wind measurements between 15–25 m/s perform well\(^{69}\). Specifically, WindSat exhibited a -0.5 m/s bias and 2.5 m/s standard deviation of the bias at wind speeds of 22 m/s. While the scalar wind speed signal responds with a linear emissivity that does not saturate at extreme winds ~70 m/s\(^{62,67,68}\), the backscatter signal of wind vector measurements saturates at wind speeds above 35–40 m/s making it difficult to tell the exact wind magnitude\(^{69,70,71}\). For MW imagers and scatterometers it is challenging to validate wind speeds above 25–30 m/s because there is a scarcity of data to use as ground truth. That being said, wind information from dropsondes and Stepped-Frequency Microwave Radiometers (SFMRs) on board hurricane-penetrating aircrafts have shown that SMAP can accurately measure wind speeds of up to 70 m/s in tropical cyclones\(^{67,72}\). Note that since the TC winds algorithms are trained in TC conditions, they become less accurate in areas where sea-surface temperatures are < 20 °C and wind speed is < 10 m/s. In these conditions, the All-Weather winds product should be used. CCMP should not be used to measure high winds (> 25 m/s) associated with tropical cyclones because the background model winds used in CCMP consistently underestimate winds relative to satellite observations at higher wind speeds, and in some cases tropical cyclones are too spatially-small for the background models to pick up.

Columnar Atmospheric Water Vapor over Ocean

The MCDC water vapor retrievals agree with water vapor measurements from GPS ground stations located on small islands across the globe with mean differences of less than 1 mm between the two\(^{72}\). The MCDC water vapor retrievals display a global trend of approximately 1.5% increase per decade\(^{74}\). This tracks well with the water vapor increase relative to the increase in global temperature as predicted by the Clausius-Clapeyron equation (~7% increase in water vapor per degree of warming)\(^{93,76,77}\). Unfortunately, water vapor is not retrieved in areas of moderate to high rain rate (> 5–10 mm/hr). This can result in a systematic “non-rainy” negative bias in globally-averaged water vapor. Indeed, the MCDC average water vapor retrievals have a small “non-rainy” bias (-0.35–0.15 mm relative to GPS stations)\(^{74}\). In the presence of light rain (0–5 mm/hr), RSS is able to retrieve water vapor; however, in this case there is a large positive bias in AMSR-E water vapor measurements (up to 2 mm at rain rates of ≥ 2 mm/hr)\(^{73}\). Another issue relates to wind speed: almost every MCDC sensor shows a roughly linear decrease in its water vapor bias relative to GPS stations as wind speed increases\(^{73}\). This is potentially due to small errors in the ocean surface model used in the RTM.

Columnar Cloud Liquid Water over Ocean

It is difficult to check the accuracy of MCDC columnar cloud liquid water retrievals against in situ sources because measurements of cloud liquid water over the oceans are sparse and cloud coverage can vary significantly over the large area that the satellite observes. Provided these difficulties, cloud liquid water is validated with probability distribution functions (PDFs) of cloud liquid water for different ranges of sea-surface temperature, wind speed, and atmospheric water vapor. The PDFs have a distinctive shape where the peak of the PDFs is near a cloud liquid water value of 0.025 mm with a half-peak at 0.000 mm. The steeply-sloped left sides correspond to clear-sky conditions when there is little to no cloud liquid water. If the left side half-peak of the stratified PDFs are aligned, it indicates minimal errors in the cloud liquid water measurement, and therefore, minimal contamination or crosstalk from SST, wind speed, or water vapor. Conversely, if the clear-sky portions of the PDFs are not aligned then signals from one of the other geophysical variables in a given scene may be causing an erroneous cloud water signal when there is none. This analysis suggests that the systematic cloud liquid water root-mean-square error is: +/- 0.005 mm\(^{13}\). Another source of error could be related to the cloud liquid water vs rain threshold value. In the MCDC algorithm, a cloud is assumed to be raining if the cloud liquid water value is greater than 0.180 mm (i.e., the rain threshold, \(L_{SWI}\), is equal to 0.180). It is possible that cloud liquid water may end up being over- (under-) estimated if clouds are precipitating below (above) the threshold of 0.180 mm. However, this threshold was shown to be reasonable\(^{78}\).

Sea-Surface Rain Rate

The MCDC sea-surface rain rate average bias is 4 mm/yr, or approximately 5x10\(^4\) mm/hr, for all measurements of rain rate from TMI compared to the Pacific Marine Environmental Laboratory (PMEL) tropical buoys located between 25°S and 21°N across the years 1997–2011\(^{11}\). For the retrieval of rain rate, we use the columnar cloud liquid water as a proxy for rain; for values of cloud liquid water below 0.18 mm, the rain is assumed to be zero\(^{78}\). Unaccounted for variations this threshold may produce spurious trends in the rain calculation.
Sea-Surface Salinity

In non-raining scenes and SSTs > 5 °C, the MCDC 70 km SMAP SSS data product has a -0.01 psu bias and a 0.14–0.15 psu standard deviation of the bias when compared to drifting ARGO buoys\(^1\) (a global array of over 3000 floats) and the Hybrid Coordinate Ocean Model (HYCOM)\(^{79,80,81}\). In high rain, the ARGO data are not a reliable validation source. This is because the stratification of the upper ocean layer caused by rain results in a sampling mismatch error between the satellite sensor observation, which is taken at a depth of 1–5 m\(^2\). In addition, the MCDC salinity retrievals degrade in cold water, as the 1.4 GHz L-band surface emission loses sensitivity at low SSTs. Other reasons for possible degradation include proximity of the retrieval to land or sea ice and the presence of sun glint or high wind speeds. The effect of the sea ice edge on SSS retrievals has been largely mitigated by a sea ice flag developed by RSS\(^83\).

Atmospheric Temperature Profiles over Ocean and Land

The MCDC TLT dataset shows greater trends in warming (0.21–0.25 K/decade) as compared to radiosonde datasets (0.18–0.20 K/decade)\(^15\). The University of Alabama-Huntsville (UAH) TLT trends are also smaller than the MCDC TLT trends (0.124 vs 0.174 K/decade for near-global regions and 0.121 vs 0.147 K/decade for tropical regions)\(^15\). In addition, MCDC TLT is validated with total column water vapor, which is highly correlated with atmospheric temperature over the tropical oceans. In contrast to the radiosonde and UAH TLT biases, the MCDC TLT trend ratio (8%/K) implies slightly less warming than the expected water vapor trend ratio (6.2%/K)\(^15\). Overall, the MCDC TLT exhibited global errors of ±0.044 K and tropical errors of ±0.034 K in a Monte Carlo analysis that systematically incorporated 400 combinations of errors in TLT\(^84\).

Code Availability

The Radiative Transfer Model code that is used to generate the regressions for the microwave imager retrievals of MCDC AS-ECVs is available upon request from: https://www.remss.com/rtm/. Coefficients for the microwave imager retrieval regressions and scatterometer GMF are available upon request. Weighting functions for the microwave sounder retrievals of atmospheric temperatures are available at: https://data.remss.com/msu/weighting_functions/. In addition, the code for the diurnal warming model used to compute foundation sea-surface temperature is available on the RSS website: https://www.remss.com/research/.

Acknowledgements

Support for the MCDC over the last 40 years has primarily come from NASA’s Earth Science Division, from NOAA’s Office of Global Programs and National Center for Environment Information Climate Data Record Program, and from the MCDC’s Research and Development Program. In addition, we would like to acknowledge the scientists and technical support at Remote Sensing Systems that help create and maintain the datasets presented herein, particularly: Carl Mears, Thomas Meissner, Lucrezia Ricciardulli, Richard Lindsley, Marty Brewer, and Michael Densberger.

1 The buoy data were collected and made freely available by the International ARGO Program and the national programs that contribute to it; the ARGO Program is part of the Global Ocean Observing System.

<table>
<thead>
<tr>
<th>Sensor Name</th>
<th>Satellites</th>
<th>Time Period (years)</th>
<th>Ascending Local Equatorial Time1</th>
<th>Frequencies (GHz)</th>
<th>Mean Footprint Resolution (km)2</th>
<th>Swath Width (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSM/I85</td>
<td>DMSP F08, F10–11, F13–15</td>
<td>1987–Present</td>
<td>06:00 (F08), 17:00–22:00 Near-Polar Orbit</td>
<td>19.35 V H, 22.24 V, 37.00 V H, 85.50 V H</td>
<td>56, 45, 32.5, 14</td>
<td>1400</td>
</tr>
<tr>
<td>SSMIS85</td>
<td>DMSP F16–18</td>
<td>2003–Present</td>
<td>16:30–18:30 Near-Polar Orbit</td>
<td>19.35 V H, 22.24 V, 37.00 V H, 91.35 V H</td>
<td>56, 45, 32.5, 14</td>
<td>1700</td>
</tr>
<tr>
<td>TMI86</td>
<td>TRMM</td>
<td>1997–2015</td>
<td>Variable Inclined Orbit: 40°S to 40°N</td>
<td>10.70 V H, 19.35 V, 21.30 V H, 37.00 V H, 85.50 V H</td>
<td>57.5, 28, 23.5, 14, 7</td>
<td>758.5</td>
</tr>
<tr>
<td>GMI87</td>
<td>GPM</td>
<td>2014–Present</td>
<td>Variable Inclined Orbit: 60°S to 60°N</td>
<td>10.65 V H, 18.70 V H, 23.80 V, 36.64 V H, 89.00 V H</td>
<td>25.5, 14.5, 13, 12, 5.5</td>
<td>930</td>
</tr>
<tr>
<td>SMAP86</td>
<td>SMAP</td>
<td>2015–Present</td>
<td>18:00 Near-Polar Orbit</td>
<td>1.410 V H U</td>
<td>43</td>
<td>1000</td>
</tr>
</tbody>
</table>

1 Information was obtained from: https://www.remss.com/support/crossing-times. 2 Information was obtained from: https://www.remss.com/missions. 3Fully polarimetric channels.
Table 2. Inputs: MW cross-track scanning sounders used to generate AS-ECV data. MSU=Microwave Sounding Unit. AMSU=Advanced Microwave Sounding Unit. FOV=Sensor Field of View.

<table>
<thead>
<tr>
<th>Sensor Name</th>
<th>Satellites</th>
<th>Time Period (years)</th>
<th>Ascending Local Equatorial Time¹</th>
<th>Frequencies (GHz)</th>
<th>Mean Footprint Resolution (km)</th>
<th>Swath Width (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSU¹³</td>
<td>Tiros-N, NOAA-06–12, 14</td>
<td>1978–2005</td>
<td>13:30–20:30</td>
<td>4 channels: 50.30–57.95 Vx2, Hx2</td>
<td>110</td>
<td>~ 640 (central 5 FOVs)</td>
</tr>
</tbody>
</table>

¹ Information was obtained from: https://www.remss.com/support/crossing-times/.

Table 3. Inputs: MW scatterometers used to generate AS-ECV data. SeaWinds is a conical scanning “pencil beam” scatterometer, while ASCAT is a cross-track chirping “fan beam” scatterometer. ASCAT=Advanced Scatterometer.

<table>
<thead>
<tr>
<th>Sensor Name</th>
<th>Satellites</th>
<th>Time Period (years)</th>
<th>Ascending Local Equatorial Time¹</th>
<th>Frequencies (GHz)</th>
<th>Mean Footprint Resolution (km)</th>
<th>Swath Width (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeaWinds⁰</td>
<td>Quickbird (QuikSCAT) ADEOS-2/ MIDORI-2 (SeaWinds)</td>
<td>1999–2009 2002–2003 (SeaWinds)</td>
<td>06:00 (QuikSCAT) 22:30 (SeaWinds) Near-Polar Orbit</td>
<td>13.40 V H 39 (H)</td>
<td>44.5 (V)</td>
<td>1800</td>
</tr>
</tbody>
</table>

¹ Information was obtained from: https://www.remss.com/support/crossing-times/.
Table 4. Variable definitions for Equations (1) through (17).

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_B</td>
<td>Top-of-the-atmosphere T_B (K) for a given MW frequency and polarization.</td>
</tr>
<tr>
<td>T_A</td>
<td>Top-of-the-ionosphere T_A (K) for a given MW frequency and polarization.</td>
</tr>
<tr>
<td>χ</td>
<td>The coefficients of fractional power coming from the orthogonal polarization (cross-polarization coupling).</td>
</tr>
<tr>
<td>E_{refl}</td>
<td>Emissivity of the main sensor reflector.</td>
</tr>
<tr>
<td>T_{refl}</td>
<td>Temperature (K) of the main sensor reflector.</td>
</tr>
<tr>
<td>η</td>
<td>The fraction of received power coming from cold space (spillover).</td>
</tr>
<tr>
<td>T_C</td>
<td>Temperature (~2.7 K) of the cosmic microwave background radiation (cold space).</td>
</tr>
<tr>
<td>E_s</td>
<td>Sea-surface emissivity for a given MW frequency and polarization.</td>
</tr>
<tr>
<td>T_S</td>
<td>Surface temperature (K).</td>
</tr>
<tr>
<td>$T_{\text{BU}}, T_{\text{BD}}$</td>
<td>Upwelling and downwelling atmospheric T_B (K).</td>
</tr>
<tr>
<td>τ</td>
<td>The total transmissivity through the atmosphere.</td>
</tr>
<tr>
<td>$T_{B,\text{scat}}$</td>
<td>T_B (K) adjustment that accounts for scattering as opposed to reflections from sea surface.</td>
</tr>
<tr>
<td>Ω</td>
<td>Empirical factor term.</td>
</tr>
<tr>
<td>h, H</td>
<td>Height (h; km) above Earth’ surface and height (H; km) at which the atmospheric absorption is zero.</td>
</tr>
<tr>
<td>θ</td>
<td>Angle between the satellite viewing direction and the zenith of the Earth’s geoid at boresight (EIA; degrees).</td>
</tr>
<tr>
<td>T</td>
<td>Air temperature (K).</td>
</tr>
<tr>
<td>α</td>
<td>Atmospheric absorption coefficient for a given MW frequency and polarization.</td>
</tr>
<tr>
<td>$\alpha_D, \alpha_V, \alpha_L$</td>
<td>The three components of atmospheric absorption: dry air, water vapor, liquid cloud water.</td>
</tr>
<tr>
<td>ε_L</td>
<td>Dielectric constant of pure (cloud) water which depends on the temperature of the medium.</td>
</tr>
<tr>
<td>ρ_V, ρ_L</td>
<td>Water vapor density and cloud liquid water density (kg/m3).</td>
</tr>
<tr>
<td>P</td>
<td>Dry air pressure (kPa).</td>
</tr>
<tr>
<td>$E_{\text{s}}, \Delta E_W, \Delta E_{\varphi}$</td>
<td>Emissivity of the specular ocean surface, isotropic wind-induced emissivity, four Stokes parameters of the wind direction signal.</td>
</tr>
<tr>
<td>S</td>
<td>Sea-surface salinity (psu).</td>
</tr>
<tr>
<td>W</td>
<td>Wind speed (m/s).</td>
</tr>
<tr>
<td>φ</td>
<td>Wind direction relative to azimuthal look (degrees).</td>
</tr>
<tr>
<td>m_{1j}, m_{2j}</td>
<td>Measurement of AS-ECV for 1st stage regression and 2nd stage regression.</td>
</tr>
<tr>
<td>j, k, l</td>
<td>AS-ECV sea-surface temperature or wind speed index (j), sea-surface temperature 1st stage regression integer value index (k), wind speed 1st stage regression integer value index (l).</td>
</tr>
<tr>
<td>a, b, c</td>
<td>Coefficients for AS-ECV non-linear and linear regressions.</td>
</tr>
<tr>
<td>w</td>
<td>Linear combination of AS-ECV measurements from 1st stage regression.</td>
</tr>
<tr>
<td>z</td>
<td>Zenith optical depth (km).</td>
</tr>
<tr>
<td>F</td>
<td>Weighting function for atmospheric layers.</td>
</tr>
<tr>
<td>κ</td>
<td>Atmospheric absorption coefficient.</td>
</tr>
<tr>
<td>σ_φ</td>
<td>The normalized radar cross-section (radar backscatter).</td>
</tr>
<tr>
<td>d_{1i}, d_{2i}, d_2</td>
<td>Coefficients of radar backscatter 5th order polynomials.</td>
</tr>
</tbody>
</table>
Table 5. Outputs: Data available at the MCDC. Most products are L(evel) 3 unless specified as L2 or L4. Spatial “Grid” is the spatial sampling in lat/lon degrees. OI=Optimally Interpolated; TC=Tropical Cyclone; CCMP=Cross-Calibrated Multi-Platform.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sensors</th>
<th>Spatial</th>
<th>Temporal</th>
<th>Data Format</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Range</td>
<td>Grid</td>
<td>Resolution</td>
</tr>
<tr>
<td>Sea-Surface Temperature</td>
<td>TMI, GMI, AMSR-E, AMSR-2, WindSat</td>
<td>40°S to 40°N (<2002-06-01) Global Ocean (>=2002-06-01)</td>
<td>0.25°</td>
<td>1997– Present Daily¹, 3-Day, Weekly, Monthly</td>
</tr>
<tr>
<td>OI Sea-Surface Temperature (MW)</td>
<td>TMI, GMI, AMSR-E, AMSR-2, WindSat</td>
<td>40°S to 40°N (<2002-06-01) Global Ocean (>=2002-06-01)</td>
<td>0.25°</td>
<td>1998– Present L4 Daily</td>
</tr>
<tr>
<td>OI Sea-Surface Temperature (MW + IR)</td>
<td>TMI, GMI, AMSR-E, AMSR-2, WindSat, MODIS-Terra, MODIS-Aqua, VIIRS-NPP, VIIRS-N20</td>
<td>Global Ocean</td>
<td>0.09°</td>
<td>2002– Present</td>
</tr>
<tr>
<td>Ocean Wind Speed</td>
<td>SSM/I, SSMIS, TMI, GMI, AMSR-E, AMSR-2, SMAP</td>
<td>Global Ocean</td>
<td>0.25°</td>
<td>1987– Present Daily¹, 3-Day, Weekly, Monthly</td>
</tr>
<tr>
<td>Ocean Wind Vector²</td>
<td>WindSat, QuikScat, Sea-Winds, ASCAT</td>
<td>Global Ocean</td>
<td>0.25°</td>
<td>1999– Present Daily¹, 3-Day, Weekly, Monthly</td>
</tr>
<tr>
<td>Ocean TC/All-Weather Wind Speed</td>
<td>AMSR-E (only TC), AMSR-2, WindSat, SMAP</td>
<td>Tropical Ocean³ All-Weather: Global Ocean</td>
<td>0.25°</td>
<td>2002– Present Daily</td>
</tr>
<tr>
<td>CCMP</td>
<td>MCDC Wind Vector, QuikSCAT, ASCAT, N400, ERA-Interim</td>
<td>Global Land Global Ocean</td>
<td>0.25°</td>
<td>1988– Present 6-Hourly</td>
</tr>
<tr>
<td>Columnar Atmospheric Water Vapor</td>
<td>SSM/I, SSMIS, TMI, GMI, AMSR-E, AMSR-2, WindSat</td>
<td>Global Ocean</td>
<td>0.25°</td>
<td>1987– Present Daily¹, 3-Day, Weekly, Monthly</td>
</tr>
<tr>
<td>Columnar Cloud Liquid Water</td>
<td>SSM/I, SSMIS, TMI, GMI, AMSR-E, AMSR-2, WindSat</td>
<td>Global Ocean</td>
<td>0.25°</td>
<td>1987– Present Daily¹, 3-Day, Weekly, Monthly</td>
</tr>
<tr>
<td>Sea-Surface Rain Rate</td>
<td>SSM/I, SSMIS, TMI, GMI, AMSR-E, AMSR-2, WindSat</td>
<td>Global Ocean</td>
<td>0.25°</td>
<td>1987– Present Daily¹, 3-Day, Weekly, Monthly</td>
</tr>
<tr>
<td>Sea-Surface Salinity</td>
<td>SSM/I, SSMIS, TMI, GMI, AMSR-E, AMSR-2, WindSat</td>
<td>Global Ocean</td>
<td>0.25°</td>
<td>1987– Present Daily¹, 3-Day, Weekly, Monthly</td>
</tr>
<tr>
<td>Atmospheric Temperature Profiles</td>
<td>MSU, AMSU</td>
<td>Global Land Global Ocean</td>
<td>2.5°</td>
<td>1978/1987 (TTS)–Present Monthly</td>
</tr>
</tbody>
</table>

¹Indicates that the daily products include both ascending and descending orbits. ²Direction+Speed. ³SST>20°C; Winds>10 m/s.
References

